

Thermochimica Acta 352-353 (2000) 103-105

thermochimica acta

www.elsevier.com/locate/tca

Standard enthalpy of formation of paratungstate B ion $H_2W_{12}O_{42}^{10-}(aq)$

Shijun Liu^{*}, Qiyuan Chen, Pingmin Zhang

Department of Chemistry, Central South University of Technology, Changsha, Hunan 410083, China

Received 2 June 1999; received in revised form 31 August 1999; accepted 24 September 1999

Abstract

The enthalpy of sodium paratungstate $Na_{10}H_2W_{12}O_{42}\cdot 27H_2O(s)$ dissolved in solution of 1.0 mol dm⁻³ LiClO₄ was measured at 298.15 K using a Calvet twin-vessel microcalorimeter. The standard enthalpy of formation of paratungstate B ion, $H_2W_{12}O_{42}^{10-}(aq)$, was calculated on the basis of the experimental results. Combining this with values from the literature led to $\Delta_f H_m^0$ ($H_2W_{12}O_{42}^{10-}$, aq, 298.15 K)=-(11653.5±10.9) kJ mol⁻¹. \bigcirc 2000 Elsevier Science B.V. All rights reserved.

Keywords: Standard enthalpy of formation; Paratungstate B ion; Calorimetry

1. Introduction

The crystallization of solid ammonium paratungstate (APT) from the solution containing paratungstate B ion, $H_2W_{12}O_{42}{}^{10-}(aq)$, is an essential intermediate purification step in the overall extraction process of tungsten from its ores. A knowledge of the thermodynamic property of $H_2W_{12}O_{42}{}^{10-}(aq)$ is therefore desirable for understanding and controlling this crystallization. The thermodynamic study on paratungstate B ion has been reported by Arnek [1] and Cruywagen et al. [2]. They determined the standard enthalpy of reaction for the formation of $H_2W_{12}O_{42}{}^{10-}(aq)$ from $WO_4{}^{2-}$ ion at 298.15 K using titration calorimetry. The standard enthalpy of formation of $H_2W_{12}O_{42}{}^{10-}(aq)$ could be obtained from their results. These determinations are indirect

* Corresponding author. Fax: +86-731-8826136.

because three reactions were assumed in the model of Arnek [1] and four in the model of Cruywagen et al. [2]. Moreover, in the acidic solution of WO_4^{2-} , the formation of $H_2W_{12}O_{42}^{10-}$ (aq) is too slow [3,4] to be measured by the titration calorimetry. In the present work, the standard enthalpy of formation of $H_2W_{12}O_{42}^{10-}$ (aq) was directly determined at 298.15 K by measuring the enthalpy of solution $\Delta_{sol}H_m$ of sodium paratungstate $Na_{10}H_2W_{12}O_{42}$ ·27 $H_2O(s)$ in solution of 1.0 mol dm⁻³ LiClO₄ using a Calvet twinvessel microcalorimeter.

2. Experimental

The synthesis of sodium paratungstate has been reported previously [5]. The chemical and thermogravimetric analysis gave the composition of $Na_{10}H_2$. $W_{12}O_{42}$ ·27H₂O. The sample was ground in an agate mortar and that of 200 mesh was used for calorimetric measurements. Prior to experiment, the sample was

E-mail address: s-whs@mail.csut.edu.cn (S. Liu)

^{0040-6031/00/\$ –} see front matter 0 2000 Elsevier Science B.V. All rights reserved. PII: S0040-6031(99)00445-1

Fig. 1. The scheme of the cells for the dissolving reaction of the sample.

pressed into pellets and kept at reference temperature 298.15 K for 5 h. The solution of 1.0 mol dm^{-3} LiClO₄ was prepared by dissolving crystal of LiClO₄·2H₂O (A.R.) in distilled water.

A Calvet twin-vessel microcalorimeter HT-1000 (Setaram, France) was employed. Before experiments, the sensitivity and temperature scales of the calorimeter were calibrated carefully [6]. The scheme of the cells for the dissolving reaction of the sample was shown in Fig. 1. Equal volume of solvent was introduced into the reaction cell and reference cell, respectively. The glass clubs, which were hanged by silk yarn (0.2 mm diameter), were used to stir solution by pulling simultaneously silk yarn. This method of stirring was proved to be reliable for the dissolving of the sample and for the stability of the baseline. A pellet of weighed sample at reference temperature was dropped into the reaction cell after the heat-flow baseline had become steady. The reference temperature equals that of the calorimeter. The calorimetric results were collected simultaneously by a computer.

The enthalpy of solution of KCl(s) in water (10.00 cm^3) to form about KCl·1120 H₂O was measured at $T=(298.15\pm0.5)$ K to check the accuracy of the calorimetric method. The results are listed in Table 1. The mean value of seven experimental runs was (17.48 ± 0.12) kJ mol⁻¹, which was in good agreement with the value 17.503 kJ mol⁻¹ from the literature [7]. The accuracy of the calorimeter is therefore reliable.

In order to determine $\Delta_{f}H_{m}^{0}$ (H₂W₁₂O₄₂¹⁰⁻, aq, 298.15 K), the reaction at 298.15 K:

Table 1 Results of enthalpy of solution for KCl(s) in 10.00 cm³ H₂O at 298.15 K (molar mass of KCl is 74.555 g mol⁻¹)

No.	W _{KCl} /g	$Q_{\rm p}/{ m J}$	$\Delta_{\rm sol}H_{\rm m}/({\rm J~mol}^{-1})$
1	0.04023	9.563	17722
2	0.03370	7.956	17601
3	0.03650	8.599	17565
4	0.03782	8.994	17730
5	0.03796	8.974	17625
6	0.03401	7.851	17211
7	0.03857	8.749	16912
Average			17479 ± 115

$$\begin{split} \mathrm{Na_{10}H_2W_{12}O_{42}} & \cdot 27\mathrm{H_2O}(\mathrm{s}) + n\mathrm{H_2O} \\ &= 10\mathrm{Na^+}(\mathrm{aq}) + \mathrm{H_2W_{12}O_{42}}^{10-}(\mathrm{aq}) \\ &+ 27\mathrm{H_2O}(\mathrm{l}) \end{split} \tag{1}$$

was used. During the aging of the aqueous solution of Na₁₀H₂W₁₂O₄₂·27H₂O(s), paratungstate B ion (H₂W₁₂O₄₂¹⁰⁻) would be slowly converted to paratungstate A (W₇O₂₄⁶⁻), while such conversion could be prevented in the presence of Li⁺ ion [3]. Therefore, the enthalpy of solution $\Delta_{sol}H_m$ for the reaction (1) could be measured, using a HT-1000 calorimeter when a given mass of Na₁₀H₂W₁₂O₄₂·27H₂O(s) is completely dissolved in the solution of 1.0 mol dm⁻³ LiClO₄. By making measurements with various mass of Na₁₀H₂W₁₂O₄₂·27H₂O(s), $\Delta_{sol}H_m^0$ could be obtained by extrapolation to infinite dilution of H₂W₁₂O₄₂¹⁰⁻(aq). The time of each measurement was about 40 min.

3. Results and discussion

The experimental results for the solution of $Na_{10}H_2W_{12}O_{42}$ ·27 $H_2O(s)$ in 10.00 cm³ solution of 1.0 mol dm⁻³ LiClO₄ are listed in Table 2.

The standard enthalpy $\Delta_{sol}H_m^0$ for the reaction (1) was calculated by fitting values of $\Delta_{sol}H_m$ from Table 1 to a linear function of m_{SPTB} , where m_{SPTB} denotes mol dm⁻³,

$$\Delta_{\rm sol} H_{\rm m} = (124.2 \pm 0.2) + (897.3 \pm 51.3) \\ \times m_{\rm SPTB} \tag{2}$$

so that $\Delta_{sol}H_m^0 = (124.2\pm0.2) \text{ kJ mol}^{-1}$. The extent of fit is shown in Fig. 2.

Table 2

Experimental enthalpy of solution $\Delta_{sol}H_m$ of $Na_{10}H_2$. $W_{12}O_{42}$ ·27 $H_2O(s)$ in 10.00 cm³ solution of 1.0 mol dm⁻³ LiClO₄ at 298.15 K (molar mass of $Na_{10}H_2W_{12}O_{42}$ ·27 H_2O (SPTB) is 3596.5 g mol⁻¹)

No.	W _{SPTB} /g	$m_{\rm SPTB}/({\rm mol}~{\rm dm}^{-3})$	$\Delta_{\rm sol}H_{\rm m}/({\rm kJ~mol}^{-1})$
1	0.18343	0.00510	128.8
2	0.15975	0.00444	128.3
3	0.15301	0.00425	127.9
4	0.12592	0.00350	127.4
5	0.11675	0.00325	127.3
6	0.10641	0.00296	126.7
7	0.07005	0.00195	126.0

From reaction (1), we then have

$$\begin{split} \Delta_{\rm f} H^0_{\rm m}({\rm H}_2{\rm W}_{12}{\rm O}_{42}{}^{10-},{\rm aq}) \\ &= \Delta_{\rm sol} H^0_{\rm m} + \Delta_{\rm f} H^0_{\rm m}({\rm Na}_{10}{\rm H}_2{\rm W}_{12}{\rm O}_{42} \\ &\cdot 27{\rm H}_2{\rm O},{\rm s}) - 10\Delta_{\rm f} H^0_{\rm m}({\rm Na}^+,{\rm aq}) \\ &- 27\Delta_{\rm f} H^0_{\rm m}({\rm H}_2{\rm O},{\rm l}) \end{split}$$
(3)

Combining this value with the standard enthalpies of formation, $-(240.30\pm0.065)$ kJ mol⁻¹ for Na⁺(aq) [8], $-(285.83\pm0.04)$ kJ mol⁻¹ for H₂O(l) [8], and $-(21898.1\pm10.8)$ kJ mol⁻¹ for Na₁₀H₂W₁₂O₄₂. 27H₂O(s) from our measurement [9], we could obtain the following value:

Fig. 2. The curve of $\Delta_{sol}H_m$ against m/mol dm⁻³ for Na₁₀H₂-W₁₂O₄₂·27H₂O(s) dissolving in solution of 1.0 mol dm⁻³ LiClO₄ at 298.15 K.

$$\begin{split} \Delta_{\rm f} H^0_{\rm m}(H_2 {\rm W}_{12} {\rm O}_{42}{}^{10-}, {\rm aq}, \ 298.15 \ {\rm K}) \\ = -(11653.5 \pm 10.9) {\rm kJ \ mol^{-1}} \end{split}$$

Arnek [1] and Cruywagen et al. [2] determined the standard enthalpy of the reaction

$$12WO_4{}^{2-}(aq) + 14H^+(aq)$$

= H₂W₁₂O₄₂¹⁰⁻(aq) + 6H₂O(l) (4)

The results are $\Delta_r H_m^0$ (298.15 K)= $-(531\pm8)$ kJ mol⁻¹ in the medium [1] of 3.0 mol dm⁻³ NaClO₄ and $-(542\pm4)$ kJ mol⁻¹ in the medium [2] of 1.0 mol dm⁻³ NaCl, respectively. With data of the standard enthalpies of formation for WO₄²⁻(aq) [10], -1073.2 kJ mol⁻¹, and for H₂O(l) [8], the standard enthalpy of formation of H₂W₁₂O₄₂¹⁰⁻(aq) was calculated to be -11694.4 kJ mol⁻¹ from the result reported by Arnek [1] and to be -11705.4 kJ mol⁻¹ from the result reported by Cruywagen et al. [2]. There is an obvious difference between their values and ours. Since only our result is obtained from the direct measurement method, our result should be recommended as the value of standard enthalpy of formation of H₂W₁₂O₄₂¹⁰⁻(aq).

Acknowledgements

The authors acknowledge the State Education Committee of China for financial support (National Doctorate Program Fund, 9553305).

References

- [1] R. Arnek, Acta Chem. Scand. 23 (1969) 1986.
- [2] J.J. Cruywagen, I.F.J. van der Merwe, J. Chem. Soc. Dalton Trans. (1987) 1701.
- [3] R.I. Maksimovskaya, K.G. Burtseva, Polyhedron 4 (1985) 1559.
- [4] S. Liu, Q. Chen, P. Zhang, S. Li, Trans. Nonferrous Met. Soc. China 8 (1988) 688.
- [5] S. Liu, Q. Chen, P. Zhang, M. Liu, Acta Phys.-Chim. Sinica 14 (1998) 821.
- [6] Q. Chen, S. Liu, P. Zhang, J. Chem. Thermodyn. 31 (1999) 513.
- [7] D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, R.L. Nuttal, J. Phys. Chem. Ref. Data, 1982, 11, Suppl. No. 2, The NBS Tables of chemical thermodynamic properties, 2–330.
- [8] J.D. Cox, D.D. Wagman, V.A. Medevedev, CODATA Key Values for Thermodynamics, Hemisphere Publishing Corporation, 1989.
- [9] Q. Chen, S. Liu, P. Zhang, Thermochim. Acta (in press).
- [10] I. Dellien, F.M. Hall, L.G. Hepler, Chem. Rev. 76 (1976) 283.